

Mrs. Sri Vani C.S.E. Dept

Discount Cash flow Method:

It takes into account interest factors and returns after pay back period.

 $F=P(1+r)^n$

Net Present value=Present value of cash inflows-present value of cash outflow

Decision Rule: If the above is +ve then we should accept the period.

If NPV is -ve then we should reject. If it is zero we need to find out Internal Rate of Return.

Methods of calulating NPV:

Case 1: When annual cash inflows are equal

<u>Step-1</u>:Find Cash Flow After Taxes(CFAT)

CFAT=Net profit- Taxes +Depreciation

Deducted because of cash outflow

Added because of Monetary Expenses

Note:Unpaid and Outstanding expenses also to be added in the profit.

<u>Step-2</u>:Find present values of outflows. It means working capital(So it is asset)

Find out the initial amount.

<u>Step-3</u>:Find present value of CFAT as found in step-1 using present value annuity factor(PVAF) table

<u>Step-4</u>:Deduct present value of cash outflow from the present value of cash inflow i.e. is Step-1.

Note: While calculating PV of CFAT at the ending year, add salvage value if any.

Case-2:

When annual cash flows are unequal or uneven, repeat all the above steps but substitute PVF in the place of PVAF

<u>Problem</u>: Suppose a firm is evaluating a proposal costing Rs.1,60,000/- and expected to generate cash inflows of 40,000/-,60,000 /-,50,000 /-,50,000 /-,40,000 /- over 5 years. Find NPV of the project at 10% discount rate and decide whether project is feasible

Solution:

Year	CFAT	Present Value Factor	Present Value of Cash inflow
1	40,000	0.909	36,360
2	60,000	0.826	49,560
3	50,000	0.751	37,550
4	50,000	0.683	34,150
5	40,000	0.621	24,840

1,82,460

NPV=Sum total of column 4-initial cost

$$=1,82,460-1,60,000$$

 $=B_{s},22,460/_{-}$

=Rs 22,460/-

Since the value is positive, we accept the project

Suppose in the above problem, the project at the end of 5th year , used machinery fetches Rs.25,000 as salvage or scrap, then Find NPV

Solution:

Then on the 5th year CFAT as is 40,000/- now it will be 40,000+25,000. Then PV to be found.

Suppose in the 2nd year along with 60,000 extra amount of 30,000 is required, then it will not effect the NPV i.e., initial outflow + PV of 30,000 i.e.30,000*0.826 will be deducted from the summation of the column 4

Internal rate of Return Method(IRR)

IRR equilibrates Net Present Value to zero. In other words IRR is a situation where the Present value of Cash Inflows are equal to the Cash Outflows. The following procedure to be adopted to find IRR. Case 1: Where future inflows are even

<u>Step-1</u>:Find the payback period for the cash outflow

<u>Step 2:</u>Check from PVAF table where the above payback value lies i.e. the upper interval ad lower interval of the pay back value should be found from the corresponding year.

<u>Step 3</u>:Use the upper and lower % of interest found in step-2 to find the present value of cash inflows of the ending year.

<u>Step 4</u>:Use the following formula to find IRR

$$r_{1} + (\Delta_{1} - \Delta) / (\Delta_{1} - \Delta_{2})$$

or
$$r_{2} (\Delta - \Delta_{1}) / (\Delta_{1} - \Delta_{2})$$

Where r_1 is the lower rate of interest, r_2 is the lower rate of interest Δ_1 = The present value of cash inflow at r_1 Δ_2 = The present value of cash inflow at r_2 Δ =Initial cash outflow

Case 2: Where cash inflows are uneven

<u>Step 1</u>:Find pay back period

<u>Step 2:</u>Check from PVF table the upper and lower interval of interest rates where the payback values lies.

<u>Step 3:</u>Find the PV of cash inflows for each year (not for the ending year alone) at upper and lower intervals inorder to find Δ_1 and Δ_2

<u>Step 4</u>:

$$r_{1} + (\Delta_{1} - \Delta) / (\Delta_{1} - \Delta_{2})$$

or
$$r_{2} - (\Delta - \Delta_{1}) / (\Delta_{1} - \Delta_{2})$$

Problem: The proposal project requires the initial cash outflow of Rs.1,00,000/- which fetches annual inflow of 25,000/- for 6 years. Find IRR

Solution: If market or marginal interest rate % is not given ,then assume it to be 10% Payback period= (1,00,000/25,000)=4 years Now check PVAF table at 4 years Find value near to 4(Pay back period) one upper limit and one lower limit Low interest is $r_1 = 12\%$ i.e. 4.111 High interest $r_2 = 13\%$ i.e. 3.998 Step 3:Find Δ_1 and Δ_2 $\Delta_1 = 6^{\text{th}}$ year cash inflow*discounted value at r_1 =25000*4.111=102775 $\Delta_2 = 6^{\text{th}}$ year cash inflow*discounted value at r_2 =25000*3.998=99950 Step 4: $r_1 + (\Delta_1 - \Delta)/(\Delta_1 - \Delta_2)$ Δ =1,00,000(initial cash outflow) =12%+(102775-100000)/(102775-99950)=12%+0.98=12.98%

For case 2:The given project requires 1,60,000 of outflow which fetches which fetches 40,000/-, 60,000/-,50,000/-,50,000/-,40,000/-, over 5 years respectively. Find IRR at 10% Solution: Finding pay back period and put weightage for each cash inflow(also called Hit and Trial Method)

Year	CFAT	Weights	Weight average flows
1	40,000	5	2,00,000
2	60,000	4	2,40,000
3	50,000	3	1,50,000
4	50,000	2	1,00,000
5	40,000	1	40,000
		15	7,30,000

Actual weighted average inflow = weight average cash inflow/Total weights

= 7,30,000/15 = 48,666.66 Step -1: Pay back value= 1,60,000/4867=3.288 i.e 3 to 4 years Check PVF table. Value lies between 15% to 16% r_1 =15% and r_2 =16% To find out Δ_1 at 15%

Year	CFAT	Present Value Factor	Present Value of Cash inflow
1	40,000	0.870	36,360
2	60,000	0.756	49,560
3	50,000	0.658	37,550
4	50,000	0.572	34,150
5	40,000	0.497	24,840

Referring PVF not PVAF at 15% as inflows areunequal Δ_1 =summation at column 4 Δ_2 is at 16%,same procedure. Then put in formulae